5th SEECCM2023 ECCOMAS Conference

Dear Colleagues,

The 5th SEECCM2023 ECCOMAS Conference will be organized on July 5-7, 2023, in Vrnjačka Banja, Serbia.

Vrnjačka Banja is a municipality located in the Raška District, Central Serbia, well-known for its hot springs. Vrnjačka Banja is also the most celebrated and most popular spa town of Serbia and, at same time, a very attractive international recreation center.

The objective of SEECCM 2023 is to bring together engineers, IT experts, bioengineers, biochemists, physicists, and chemists in order to explore fresh ideas for new methodologies and application of computational mechanics.

Scientists of international prestige in the field of the conference have confirmed their participation as keynote speakers. Also, selected papers shall be considered for publication in a special issue of a leading journal published by Springer.  

You are invited to submit your abstract to one of the following conference topics: Solid Mechanics, Fluid Mechanics, Coupled Problems, Discrete Modeling, Multiscale Modeling, Biomechanics, Nanomedicine, Cardiovascular Mechanics, Tissue Engineering, Dental Mechanics, Bone Mechanics, Musculoskeletal Mechanics, Sport Biomechanics, Cellular and Molecular Mechanics, Medical Image Computing and Computational Chemistry.

The first SEECCM conference was held in 2006 in Kragujevac, Serbia and during this conference the Serbian Society for Computational Mechanics (SSCM) was founded. On the 10th year anniversary of the SSCM the organizers again invited scientists from South-East Europe and all over the world to the same city. Fourth SEECCM conference was organized again in Kragujevac. The previous four SEECCM conferences were very successful and had a profound impact on the goals of the regional and the world community of scientist to invent and apply computational methods in the continuously increasing demands in science, technology and medicine. The major advancements in industrial, technological and biomedical processes can nowadays be achieved only through integration of the work of researchers in different scientific fields. Today, computational mechanics is a very developed and integrative field which uses fundamental scientific laws and computer methods to study, predict and simulate material, engineering, physical, chemical and biomedical processes. Computer simulations are indispensable in testing hypotheses and assembling information in a quantitative context.

The objective of SEECCM 2023 is to bring together engineers, IT experts, bioengineers, biochemists, physicists, and chemists in order to explore fresh ideas for new methodologies and application of computational mechanics.

Scientists of international prestige in the field of the conference have confirmed their participation as Plenary Lecturers. These lectures will be complemented by Invited Sessions organized by recognized experts in targeted research areas.

Conference Organizers

  • Prof. Miloš Kojić, Serbian Academy of Sciences and Arts, Serbia
  • Prof. Nenad Filipović, University of Kragujevac, Serbia
  • Prof. Manolis Papadrakakis, National Technical University of Athens, Greece

Submission of Abstracts

Authors are invited to submit individual contributions to one of the topics of the Conference via following E-mail.

Important Dates

  • Abstract submission                                 March 10, 2023
  • Notification of abstract acceptance       March 31, 2023
  • Extended abstract submission                April 15, 2023
  • Notification of extended abstract           June 1, 2023
  • Deadline for early payment                      June 15, 2023

Plenary Speakers

  • Prof. Adnan Ibrahimbegović – Professor Classe Exceptionnelle, Member Senior IUF-Institut Universitaire of France and Chair for Computational Mechanics at University of Technology Compiègne, France
  • Prof. Themis Exarchos -Associate Professor of Data Modeling and Decision Support Systems in the Dept. of Informatics, Ionian University and the Director of the Technology Transfer Office of Ionian University, Corfu, Greece
  • Prof. Milica Radišić – University of Toronto, Tier 1 Canada Research Chair in Organ-on-a-Chip Engineering and a Senior Scientist at the Toronto General Research Institute, Canada
  • Prof. Bernhard Schrefler – Professor Emeritus at the University of Padova, Secretary General of the International Centre for Mechanical Science (CISM) at Udine and Hans-Fischer Senior Fellow at the Institute for Advanced Study of the Technical University of Munich

 

Prof. Adnan Ibrahimbegović

Title: Synergy of Multiscale Modelling and Machine Learning in Complex Structure/System Analysis

Abstract

In this work we show that the structural engineering models are very helpful in constructing an accessible basis to experts in different domains of engineering science in order to build best microscale representation (as replacement of atomistic models) in multi-scale models for various multi-physics phenomena. Thus, we seek to provide a priori selection of reduced model by means of corresponding kinematic hypotheses and constraints that reduce the cost compared to standard solid or continuum mechanics approach (e.g. see [1,2])
Such an approach is opposite of the currently active research on constructing such reduced model in a posteriori fashion, by using the statistical approach of data processing to provide the reduced model in terms of Proper Orthogonal Decomposition (POD) or Proper Generalized Decomposition (PGD), which seems to reduce the model construction skills to the application of artificial intelligence algorithms.
The illustrations of these ideas come from current applications in multiscale modeling and probability computations. We provide only a brief presentation of the useful synergy between the nonlinear mechanics and stochastic that can be used not only to build the model of interest for dealing with real-\-life heterogeneous structures, but also to develop solution procedures that reach way beyond traditional engineering tools [3].
References
[1] A. Ibrahimbegovic, Nonlinear solid mechanics: theoretical formulations and finite element solution methods, Springer 2009
[2] A. Ibrahimbegovic, Computational Methods for Solids and Fluids: Multiscale Analysis, Probability Aspects and Model Reduction, Springer 2016
[3] A. Ibrahimbegovic, Mejia-Nava, R.A., Structural Engineering: Models and Methods for Statics, Instability and Inelasticity, Springer 2023

Biography

Adnan Ibrahimbegović is Professor Classe Exceptionnelle, Member Senior IUF-Institut Universitaire of France and Chair for Computational Mechanics at University of Technology Compiègne, a member of Alliance of Sorbonne Université (created with merger of Paris-Sorbonne and Université Pierre Marie Curie). He has obtained his engineering education in Sarajevo, PhD at the University of California Berkeley, USA and Habilitation at University Pierre Marie Curie in Paris, France. He has held professorships and research positions at four different universities (including UC Berkeley, USA; EPFL, Switzerland; ENS-Cachan, France and currently UTC, France). He is the past Chairman of ENS-Cachan Teaching and LMT-Cachan Research Departments and Head of Master Program MaiSE. He has received a number of international distinctions, including IACM Fellow Award, Humboldt Research Award for Germany, Research Award for Slovenia, International Fellow NSERC Award for Canada, ‘Claude Levy-Strauss’ Chair for Univ. Sao Paulo, Brazil, ‘Asgard’ Chair for NTNU, Norway, KAIST Invited Professor, South Korea, ‘Hôte Académique’ Award for EPFL, Switzerland. He has published more than 200 papers in scientific journals and 10 textbooks and monographs.

 

Prof. Themis Exarchos

Title: Computational Modeling for Natural Language Processing and Speech Production

Abstract

 

Biography

Themis Exarchos holds an Engineering Diploma, from the Dept. of Computer Engineering and Informatics of University of Patras (2003) and a PhD in Medical Informatics from the Medical School of the University of Ioannina (2009). He has more than 200 publications in journals, conference proceeding and book chapters. He has worked in many research and development projects, funded by EU and other bodies. He is an Associate Professor of Data Modeling and Decision Support Systems in the Dept. of Informatics, Ionian University, Corfu, Greece and the Director of the Technology Transfer Office of Ionian University. He is also o visiting Professor in the Faculty of Engineering, University of Kragujevac

 

Prof. Milica Radišić

Title: Heart-on-a-chip for Modelling of Healthy and Diseased Myocardium

Abstract

The new field of organ-on-a-chip engineering, relies on engineered, microfabricated, devices to drive establishment and measurement of critical physiological properties (e.g. contractility). My group has lead the way by a) defining an electrical stimulation protocol, in Nature Methods of ramping frequency increase (up to 6Hz) that enables iPSC-CM maturation; and as described in Cell by b) eliminating the use of drug absorbing PDMS; c) enabling non-invasive continuous measurement of contraction force by imaging; d) creating defined atrial, ventricular and atrioventricular tissues from human iPSC and e) modeling a polygenic cardiac disease, left ventricular hypertrophy, for the first time using cells from patients with high blood pressure who are enrolled in NIH HyperGen study. Critical for this success is the electrical field stimulation of iPSC-CM derived tissues using ramping frequency increase. In our initial experimental design, we ramped the frequency up to 3Hz expecting cell maturation, as heart rate peaks at 3Hz at 7 weeks gestation. Ramping the frequency to 6Hz was originally designed with the expectations that heart failure conditions will arise since pacing was too fast. Surprisingly, the data demonstrated superior cell maturation in the 6Hz vs 3Hz group. In a follow-up, we learned that we can achieve much needed atrial vs ventricular specification depending on how fast we ramp up the frequency to 6Hz and that we can build precious diseased heart muscles from patient iPSC if we stimulate long enough. In this presentation, I will present our most recent data on modelling covid19 induced myocarditis and testing of new molecules that prevent cytokine storm as well modelling cardiomyopathies resulting form ion channels and structural protein mutations. I will also show how to scale up the heart-on-a-chip device production by 3D printing and use PEDOT:PSS flexible conductive electrodes for recording of electrical impulses within the tissue.

 

Biography

Milica Radišić is a Professor at the University of Toronto, Tier 1 Canada Research Chair in Organ-on-a-Chip Engineering and a Senior Scientist at the Toronto General Research Institute. She is also Director of the NSERC CREATE Training Program in Organ-on-a-Chip Engineering & Entrepreneurship and Director of Ontario-Quebec Center for Organ-on-a-Chip Engineering. She is a Fellow of the Royal Society of Canada-Academy of Science, Canadian Academy of Engineering, the American Institute for Medical & Biological Engineering, Tissue Engineering & Regenerative Medicine Society as well as Biomedical Engineering Society. She received numerous awards and fellowships, including MIT Technology Review Top 35 Innovators under 35. She was a recipient of the Queen Elizabeth II Diamond Jubilee Medal in 2013, NSERC E.W.R Steacie Fellowship in 2014, YWCA Woman of Distinction Award in 2018, OPEA Research & Development Medal in 2019 and Killam Fellowship in 2020 to name a few. Her research focuses on organ-on-a-chip engineering and development of new biomaterials that promote healing and attenuate scarring. She developed new methods to mature iPSC derived cardiac tissues using electrical stimulation. She is an Associate Editor for ACS Biomaterials Science & Engineering, a member of the Editorial Board of Tissue Engineering, Advanced Drug Delivery Reviews, Regenerative Biomaterials, Advanced Biosystems, Journal of Molecular and Cellular Cardiology and eLife. She served on the Board of Directors for Ontario Society of Professional Engineers, Canadian Biomaterials Society and McMaster Alumni Association. Her publications appeared in Cell, Nature Materials, Nature Methods, Nature Protocols, Nature Communications, PNAS etc.

 

Prof. Bernhard Schrefler

Title: Modeling Nanoparticles Mediated Drug Delivery and Their Efficiency in Tumors

Abstract

A calibrated and validated computational model for tumor growth is adapted for the simulation of nanoparticle mediated drug delivery. The model has been developed within the framework of Transport Oncophysics. The governing equations are obtained via the Thermodynamically Constrained Averaging Theory (TCAT) and the calibration has been carried out within a Bayesian approach. The barriers to overcome for a successful drug delivery which can be handled by the model are evidenced. It is shown that we can predict where the injected Nanoparticles end up in the tumor and that we can simulate the efficiency of an anticancer drug. Different aspects related to drug delivery are then solved by means of Artificial Neural Networks. In particular, the determination of the optimal configuration for maximizing Nanoparticle accumulation at the diseased site is shown as well as the reliable identification of the physical model parameters, e.g. the killing action of the drug. Finally, an example involving the use of Machine Learning for liposome design and optimization within an interdisciplinary computational-experimental approach will be shown.
References
D.P. Boso, S-Y. Lee, M. Ferrari, B. A. Schrefler, P. Decuzzi, Optimizing Particle Size for Targeting the Diseased Microvasculature: from Experiments to Artificial Neural Networks, International Journal of Nanomedicine, 2011:6. 1517-1526.
Pietro Mascheroni , Daniela Boso , Luigi Preziosi , Bernhard A. Schrefler , Evaluating the influence of mechanical stress on anticancer treatments through a multiphase porous media model, 2017. Journal of Theoretical Biology 421, 179-188.
R. Santagiuliana, M. Milosevic, B. Milicevic, G. Siume, V. Simic, A. Ziemys, M. Kojic, B.A. Schrefler, Coupling tumor growth and bio distribution models, Biomedical Microdevices, 21 (2019), 2, 33
B. Wirthl, J. Kremheller, BA. Schrefler, WA.Wall, Extension of a multiphase tumour growth model to study nanoparticle delivery to solid tumours. PLoS ONE 15(2) (2020): e0228443
D.P. Boso, D. Di Mascolo, R. Santagiuliana, P. Decuzzi, B.A. Schrefler, Drug delivery: experiments, mathematical modelling and machine learning, Computers in Biology and Medicine, 123 (2020), 103820,
S. Hervas-Raluy, B. Wirthl, P. Enrique Guerrero, G. Robalo Rei, J. Nitzler, E. Coronado, J. Font De Mora, B. A. Schrefler, M. J. Gomez-Benito, J. M. Garcia-Aznar, W. A. Wall, Tumour growth: Bayesian parameter calibration of a multiphase porous media model based on in vitro observations of Neuroblastoma spheroid growth in a hydrogel microenvironment, bioRxiv https://doi.org/10.1101/2022.09.26.509452

Biography

Bernhard Schrefler, educated at the University of Padua (MSc), and at the University of Wales (PhD and DSc), Professor (1980-2013) and currently Professor emeritus at the University of Padua, Affiliated Professor at the Institute of Academic Medicine, Houston, TX and Hans Fischer Senior Fellow Alumni of the Institute for Advanced Study, Technical University of Munich. He was inducted to the National (Italian) Academy of Sciences (“dei XL”), Galileian Accademy, Istituto Veneto and Istituto Lombardo di Scienze, Lettere ed Arti. Honorary Fellow of the University of Swansea; Honorary Professor of the Dalian University of Technology, and Fellow of IACM (International Association for Computational Mechanics). Knighted by the French Republic in the Order of Academic Palms. Five honorary doctorates (St. Petersburg State Technical University, the University of Technology of Lodz, the Leibniz University of Hannover, the Russian Academy of Sciences, and the Ecole Normale Supérieure at Cachan); Biot, Euler, Gauss-Newton, Zienkiewicz Medals; Computational Mechanics and IACM Awards, ICCES Lifetime Achievement Award, INTERPORE Lifetime Honorary Membership Award, Fry International Sustainability Award.
Professor Schrefler’s research interests are in porous media mechanics applied to geomaterials, such as rocks, concrete and bricks, environmental geomechanics, soil mechanics and reservoir engineering; in bio-medical engineering; in structural-and materials engineering; and in thermomechanical problems in controlled thermonuclear fusion technology.

Contact and Info

You can contact the conference Secretariat at following E-mail for any question and follow us on our website for all the latest updates.